Extensions 1→N→G→Q→1 with N=D4×C32 and Q=C4

Direct product G=N×Q with N=D4×C32 and Q=C4
dρLabelID
D4×C3×C12144D4xC3xC12288,815

Semidirect products G=N:Q with N=D4×C32 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×C32)⋊1C4 = C3⋊S3.5D8φ: C4/C1C4 ⊆ Out D4×C32248+(D4xC3^2):1C4288,430
(D4×C32)⋊2C4 = C326C4≀C2φ: C4/C1C4 ⊆ Out D4×C32488-(D4xC3^2):2C4288,431
(D4×C32)⋊3C4 = D4×C32⋊C4φ: C4/C1C4 ⊆ Out D4×C32248+(D4xC3^2):3C4288,936
(D4×C32)⋊4C4 = C3×D4⋊Dic3φ: C4/C2C2 ⊆ Out D4×C3248(D4xC3^2):4C4288,266
(D4×C32)⋊5C4 = C3×Q83Dic3φ: C4/C2C2 ⊆ Out D4×C32484(D4xC3^2):5C4288,271
(D4×C32)⋊6C4 = C62.116D4φ: C4/C2C2 ⊆ Out D4×C32144(D4xC3^2):6C4288,307
(D4×C32)⋊7C4 = C62.39D4φ: C4/C2C2 ⊆ Out D4×C3272(D4xC3^2):7C4288,312
(D4×C32)⋊8C4 = C3×D4×Dic3φ: C4/C2C2 ⊆ Out D4×C3248(D4xC3^2):8C4288,705
(D4×C32)⋊9C4 = D4×C3⋊Dic3φ: C4/C2C2 ⊆ Out D4×C32144(D4xC3^2):9C4288,791
(D4×C32)⋊10C4 = C32×D4⋊C4φ: C4/C2C2 ⊆ Out D4×C32144(D4xC3^2):10C4288,320
(D4×C32)⋊11C4 = C32×C4≀C2φ: C4/C2C2 ⊆ Out D4×C3272(D4xC3^2):11C4288,322

Non-split extensions G=N.Q with N=D4×C32 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×C32).C4 = C62.(C2×C4)φ: C4/C1C4 ⊆ Out D4×C32488-(D4xC3^2).C4288,935
(D4×C32).2C4 = C3×D4.Dic3φ: C4/C2C2 ⊆ Out D4×C32484(D4xC3^2).2C4288,719
(D4×C32).3C4 = D4.(C3⋊Dic3)φ: C4/C2C2 ⊆ Out D4×C32144(D4xC3^2).3C4288,805
(D4×C32).4C4 = C32×C8○D4φ: trivial image144(D4xC3^2).4C4288,828

׿
×
𝔽